BIOLIXIVIACION PDF

La clula bacteriana presenta un aspecto viscoso, y en su zona central aparece un nucleoide que contiene la mayor parte del ADN bacteriano, y en algunas bacterias aparecen fragmentos circulares de ADN con informacin gentica, dispersos por el citoplasma, llamados plsmidos. La ms conocida es la Acidithiobacillus ferrooxidans; su nombre nos indica varias cosas: Acidithiobacillus es acidfilo porque crece en pH cido, es thio porque es capaz de oxidar compuestos de azufre, es un bacillus porque tiene forma de bastn y ferrooxidans, porque adems puede oxidar el fierro. Estos microorganismos se alimentan principalmente de dos impurezas que hay que extraer del mineral para producir cobre: El azufre, que las bacterias pueden oxidar y convertir en cido sulfrico y el fierro, el cual es precipitado sobre el mineral de descarte, lo que permite lograr una disolucin ms barata y simple. Las bacterias lixivian disuelven , las rocas o minerales y los solubilizan, por eso el proceso se llama biolixiviacin, o lixiviacin biolgica.

Author:Kajirr Shanris
Country:Senegal
Language:English (Spanish)
Genre:Marketing
Published (Last):17 September 2012
Pages:149
PDF File Size:17.82 Mb
ePub File Size:15.43 Mb
ISBN:239-1-72049-988-3
Downloads:51915
Price:Free* [*Free Regsitration Required]
Uploader:Nikorisar



NH4 2SO4 3. O2 intensivo. Figura 1. Bacteria IX. Existen bacterias quimiolitotroficas oxidan directamente minerales sulfurados concentrados.

Mossman et al. Mecanismo indirecto de minerales por Thiobacillus. Se reporta que T. La bacteria oxida directamente estos elementos que son parte de la calcopirita con valencia reducida con hierro ferroso o sulfato ferroso. La LB por T. El pH es un factor critico T. Depende del sulfuro de zinc de calcocita y covelita que necesitan hierro soluble.

Al Research Contract no. Al proyecto 2. Ahonen, L. Tuovinen, Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures.

Appl Environ. A, Jerez. Molecular aspects of the stress response in Thiobacillus ferrooxidans and other bioming microorganisms. In: J. Salley, R. Mc Cready, and P. Wichlacz eds. Canada Centre for Mineral and Energy Technology. Otawa, Ontario. Amaro, A. Lindstrom, and C. An immunological assay for detection and enumeration of thermophilic biomining microorganisms. Arredondo, R. Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids.

Ballesteros, A Selectring bacteria with leachin capability for ore refractory silver. Memoria in extenso. Blake, R. Shut, G. Volatilization of minerals by bacteria: electrophoresis mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Boon M. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy Brigmon.

Development and application of a monoclonal antibody against Thioxidans spp. Bronwyn GB. Shell, and D. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Environ Microbiol. Fowler T. Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanisn.

Golovacheva, R. Golyshina, G. Karavaiko, A. Dorofeev, T. Pivovarova, and N. A new iron-oxidizing bacterium, Leptospirillum thermoferroxidans sp. Mikrobiologya Goebel, B.

Cultural and phylogentic analysis of mixed micrbial population found in natural and commercial bioleaching environments. Groudev, S. Microbial communities in four industrial copper operations in Bulgaria. FEMS Microbiol. Gutierrez ,R,O. Growth of Thiobacillus ferrooxidans: a novel experimental design for batch growth and bacterial leaching studies.

Janssrn, A. Bontsema and G. Biological sulphide oxidation in a fed-batch reactor. Kanishi, Y. Bioleachining of zinc sulfide concentrate by Thiobacillus ferroxidans. Kashefi, K. Kusano, T. Lindstrom, E. Hgunneriusson, and O. Bacterial oxidation of refractory sulfides ores for gold recovery. Optimization of pyrite bioleachining using Sulfolobus acidocaldarius. Lopezarchilla, A. L, and R. Bioleaching and interrelated acidophillic microorganisms of Rio Tinto, Spain. Bioremediation of radionuclide containing wastewaters, p.

Lovley ed. Environmental microbe-metal interactions. American Society for Microbiology, Washington, D. Lovley, D. Lovley ed , Environmental microbe-metal interactions. Mossman, D. Reimer, and H. Microbial processes in gold migration and deposition: modern analogues to ancient deposits. Navarrete, B. Olson, G. Rate of pyrite bioleaching by Thiobacillus ferrooxidants: results of an interlaboratory comparison. Ballesteros A, and C. Archeabacteria hipertermofilas acidofilicas.

Sand, W. Gehrke, R. Sobotke and S. In situ biolecheaching of metal sulfides: the importance of Leptospirillum ferrooxidans, pp: In: Torma E.

Lakshmanan eds. Biohydrometalurgical technologies. Vol Bioleaching proccess. Sugio, T. Inagaki, and T. The mechanism of copper leaching by intact cells of Thiobacillus ferrooxidans.

SAMUEL VILA MANUAL DE HOMILETICA PDF

Biolixiviación

.

LE WLANGAGE PDF

Biolixiviación

.

Related Articles